Performance tuning and benchmarking
Database Performance Tuning and Benchmarking
Optimizing database performance ensures faster queries, better resource utilization, and scalability. This involves query optimization, indexing strategies, memory tuning, and benchmarking techniques.
1. Query Optimization
1.1 Use EXPLAIN and EXPLAIN ANALYZE
- Helps understand query execution plans and find bottlenecks.
Example (PostgreSQL, MySQL):
EXPLAIN ANALYZE SELECT * FROM orders WHERE customer_id = 100;
✅ Look for:
- Sequential Scans (bad for large tables) → Add indexes.
- Nested Loops (slow for joins) → Optimize with indexes.
- Sorting & Hash Joins → Increase memory allocation if necessary.
1.2 Reduce SELECT * Usage
- Fetch only required columns to minimize data transfer overhead.
✅ Optimized Query:
SELECT name, age FROM users WHERE status = 'active';
SELECT * FROM users;
1.3 Optimize JOINs and Subqueries
- Ensure indexed columns are used for
JOINs.
✅ Optimized Query:
SELECT o.order_id, c.name
FROM orders o
JOIN customers c ON o.customer_id = c.customer_id;
SELECT order_id, (SELECT name FROM customers WHERE customers.customer_id = orders.customer_id)
FROM orders;
2. Index Optimization
✅ Ensure proper indexing on frequently queried columns.
- Use composite indexes for multi-column searches.
- Use partial indexes to reduce size.
✅ Avoid over-indexing (slows down inserts/updates).
CREATE INDEX idx_users_status ON users(status);
✅ Rebuild fragmented indexes periodically:
REINDEX TABLE users;
3. Connection Pooling & Caching
3.1 Enable Connection Pooling
- Reduces overhead of repeatedly opening/closing database connections.
- Use PgBouncer for PostgreSQL, HikariCP for Java apps.
3.2 Implement Caching
- Use Redis or Memcached for frequent queries to avoid hitting the database.
✅ Example (PostgreSQL + Redis Caching)
import redis
import psycopg2
cache = redis.Redis(host='localhost', port=6379, db=0)
conn = psycopg2.connect("dbname=mydb user=postgres")
def get_user(user_id):
cached = cache.get(f"user:{user_id}")
if cached:
return cached # Return from cache
cur = conn.cursor()
cur.execute("SELECT * FROM users WHERE id = %s", (user_id,))
user = cur.fetchone()
cache.setex(f"user:{user_id}", 3600, str(user)) # Cache for 1 hour
return user
4. Memory and Storage Optimization
✅ Tune work_mem and shared_buffers (PostgreSQL):
SHOW work_mem;
ALTER SYSTEM SET work_mem = '64MB';
- Use INTEGER instead of BIGINT when possible.
- Use TEXT sparingly; prefer VARCHAR(n) when length is known.
✅ Partition large tables to improve query speed:
CREATE TABLE orders_2024 PARTITION OF orders FOR VALUES FROM ('2024-01-01') TO ('2025-01-01');
5. Benchmarking Tools & Load Testing
5.1 pgbench (PostgreSQL)
pgbench -i -s 10 mydb # Initialize with 10x scaling
pgbench -c 10 -j 2 -T 60 mydb # Run test with 10 clients for 60 seconds
5.2 sysbench (MySQL, PostgreSQL)
sysbench oltp_read_write --table-size=1000000 --mysql-db=test --threads=16 run
5.3 Apache JMeter for application-level testing
- Simulates thousands of concurrent users executing queries.
6. Summary of Best Practices
✅ Optimize queries using EXPLAIN ANALYZE
✅ Use proper indexing strategies (but avoid over-indexing)
✅ Enable caching for frequent queries
✅ Use connection pooling to manage concurrent requests
✅ Tune memory settings (work_mem, shared_buffers)
✅ Benchmark using pgbench, sysbench, and JMeter
Proper database tuning ensures applications scale efficiently and handle increasing loads without degradation.